Американские исследователи научились печатать на 3D-принтере пьезоэлектрические структуры с заданными направлениями максимального проявления пьезоэлектрического эффекта. Если несколько таких структур объединить в единый объект, благодаря их анизотропной реакции на механические воздействия их можно использовать для определения направления и величины деформации, рассказывают авторы статьи в Nature Materials.

Пьезоэлектрики — это материалы, в которых при механической деформации возникает электрическое напряжение, величина которого зависит от величины деформации. При этом пьезоэлектрический эффект не изотропен и зависит от того, насколько направление деформации согласуется с кристаллографической ориентацией пьезоэлектрика. Из-за этого пьезоэлектрический эффект проявляется максимально только при механическом воздействии в узком направлении, а не с любой стороны.

Группа ученых под руководством Сяоюя Чжэна (Xiaoyu Zheng) из Политехнического университета Виргинии разработала метод, позволяющий создавать пьезоэлектрические материалы с задаваемыми направлениями максимального проявления пьезоэлектрического эффекта. Основа метода заключается в том, что вместо монолитного материала создается более сложная структура, состоящая из базовых ячеек. Каждая такая ячейка состоит из нескольких стержней, находящихся под определенными углами друг к другу. Благодаря изменению этих углов ученые могут создать ячейку с потенциально любым направлением максимального проявления пьезоэлектрического эффекта, а при совмещении в одном материале нескольких ячеек с разной структурой, таких направлений может быть множество.

В своей работе авторы создали несколько таких ячеек с различной структурой. На изображении можно видеть проекции каждой ячейки на разные плоскости, а также распределение направлений электрического смещения при деформации:

Созданные учеными базовые ячейки
Созданные учеными базовые ячейки

Для печати таких структур ученые разработали материал, подходящий для использования в 3D-принтере. В основе материала лежит стандартный для пьезоэлектрических устройств цирконат-титанат свинца. Изначально ученые брали сферические наночастицы, однако затем их поверхность модифицировали с помощью органического агента, помогающего достичь равномерного распределения частиц. Кроме того, он помогает частицам связываться со светочувствительным мономером, обеспечивающим связывание частиц и затвердевание материала во время печати.

Схема создания материала для печати
Схема создания материала для печати

Ученые использовали для печати метод проекционной стереолитографии. Во время него на рабочую поверхность наносится жидкий материал, а с другой стороны его освещает источник ультрафиолета, проецирующий определенный рисунок, повторяющий срез структуры для текущего слоя. После облучения напечатанный слой поднимается, а на его место наносится новая жидкость.

Помимо печати обычных периодических и однородных структур, исследователи показали, что таким же способом можно совмещать ячейки разных типов и с их помощью добиваться определенной реакции на деформацию с разных направлений:

Пример материала с совмещением ячеек разных типов
Пример материала с совмещением ячеек разных типов