Ученые из Технического Университета Мюнхена (TU Munich) открыли неорганическое соединение, элементы которого образуют структуру двойной спирали, подобно молекуле ДНК.

Этот материал, SnIP, состоит из олова (Sn), йода (I) и фосфора (P), и является полупроводником. В отличие от других неорганических полупроводников он имеет высокую гибкость: волокна сантиметровой длины могут сгибаться в любом направлении не разрушаясь.

«Этим своим качеством SnIP безусловно обязан структуре двойной спирали, — комментирует открывшая этот материал Даниэла Пфистер (Daniela Pfister), работающая в группе профессора Тома Найлджеса (Tom Nilges). — SnIP легко производить в количествах, измеряемых граммами, и в отличие от сходного по электронным характеристикам арсенида галлия, он намного менее токсичен».

Свойства полупроводника, регулируемые в широких пределах легированием, открывают перед SnIP множество возможностей прикладного применения, от преобразования энергии в солнечных батареях и термоэлектрических элементов до фотокатализаторов, сенсоров и оптоэлектронных компонентов. В частности, гибкие фотоэлектрические панели на базе SnIP выгодно отличаются от органических солнечных батарей устойчивостью к высоким температурам, сохраняя стабильность вплоть до 500 °C.

Волокна SnIP сантиметровой длины легко разделяются на более тонкие, диаметром до нескольких нанометров и состоящие всего из пяти двойных спиралей. Это открывает перед новым полупроводником приложения наноэлектроники.

«Наряду с трёхмерным полупроводниковым материалом, кремнием, и двумерным — фосфореном, мы впервые получили одномерный материал с перспективами, не менее захватывающими, чем у углеродных нанотрубок», — заявил профессор Найлджес.

Так, в результате синтеза SnIP получается смесь из лево- и правозакрученных спиралей. Разделять их пока не умеют, но в будущем, материал, состоящий из спиралей только одного типа, ввиду его особых оптических характеристик, будет представлять интерес для особых оптоэлектронных приложений.

Расчёты показывают, что и многие другие элементы способны образовывать двойные неорганические спирали. Участники проекта ведут интенсивный поиск методов их синтеза.