Ученые из Финляндии и Великобритании создали белую целлюлозную пленку с повышенной отражательной способностью. При толщине в 10 микрометров такая пленка пропускает не больше 25 процентов падающего на него света, а белые пленки толщиной 150 микрометров отражают примерно в 20–30 раз больше света, чем обычная бумага. Пониженная прозрачность такой пленки связана с ее аномальными светорассеивающими свойствами, при этом менять оптические свойства можно, варьируя распределение составляющих ее целлюлозных волокон по толщине, пишут ученые в Advanced Materials.

Как правило, для изменения оптических свойств материала исследователи пытаются так подобрать его химический состав, чтобы он поглощал или отражал свет в нужном диапазоне длин волн. Альтернативным подходом может быть изменение структуры поверхности материала, в таком случае цвет и отражательная спообность материала определяются процессами многократного отражения и рассеяния света. Однако однозначно предсказать связь оптических характеристик с параметрами, характеризующими структуру материала, теоретически удается далеко не всегда, поэтому для разработки новых материалов ученые прибегают к другим способам. Например, очень часто ученые пользуются примерами из природы — необычным рельефом на поверхности крыльев различных насекомых. Так, структура крыла черной бабочки стала образцом для создания светопоглощающего материала для солнечных батарей, а поверхность экзоскелета золотистого жука послужила прообразом покрытия, которое необычным образом отражает поляризованный свет — сохраняя направление поляризации, а не меняя его.

Ученые из Финляндии и Великобритании под руководством Сильвии Виньолини (Silvia Vignolini) из Кембриджского университета решили использовать другое насекомое из того же семейства пластинчатоусых (Scarabeidae), что и золотистый жук, в качестве примера при создании пленок микрометровой толщины с повышенной отражающей способностью. Обитающий в юго-восточной Азии жук Cyphochilus известен тем, что поверхность его крыльев и экзоскелета ярко-белая. Материаловеды исследовали структуру хитиновых волокон на поверхности крыльев жука и предложили использовать аналогичную геометрию для получения искусственного материала, способного отражать свет значительно сильнее обычных белых материалов.

Жук Cyphochilus и полученные учеными мембраны повышенной яркости
Жук Cyphochilus и полученные учеными мембраны повышенной яркости

Вместо хитиновых волокон в искусственном материале ученые использовали волокна целлюлозы. Известно, что эти волокна могут быть разной толщины: от единиц до сотен нанометров. Ученые обнаружили, что если из целлюлозных волокон делать тонкую пленку, мембрану или, например, лист бумаги, то именно соотношение толщин волокон определяет, какая часть падающего света будет отражаться, а какая — проходить сквозь нее или поглощаться.

Чтобы точнее воссоздать структуру хитиновых волокон жука в целлюлозной пленке, ученые с помощью центрифугирования разделили все волокна на фракции различной толщины, после чего сделали из них три типа пленок: состоящих только из самых тонких волокон (средний размер 4 нанометра), с добавлением волокон толщиной в десятки нанометров и, наконец, включающих в том числе и волокна толщиной от 100 до 500 нанометров. Изменяя соотношение волокон разной толщины, можно менять размер анизотропных пор в пленке (от 30 до 700 нанометров) и таким образом варьировать ее оптические свойства: долю прошедшего, отраженного и поглощенного света. Толщину пленок ученые меняли от 2 до 50 микрометров.

Микротекстура прозрачной целлюлозной пленки. Слева — вид сверху, справа — поперечный срез пленки
Микротекстура прозрачной целлюлозной пленки. Слева — вид сверху, справа — поперечный срез пленки
Микротекстура полупрозрачной целлюлозной пленки. Слева — вид сверху, справа — поперечный срез пленки
Микротекстура полупрозрачной целлюлозной пленки. Слева — вид сверху, справа — поперечный срез пленки
Микротекстура ярко-белой целлюлозной пленки. Слева — вид сверху, справа — поперечный срез пленки
Микротекстура ярко-белой целлюлозной пленки. Слева — вид сверху, справа — поперечный срез пленки

Оказалось, что пленки первого типа практически полностью прозрачны и пропускают более 70 процентов упавшего на них света вне зависимости от толщины. Пленки второго типа были полупрозрачными, тогда как пленки третьего типа, обладали повышенной отражающей способностью: такая пленка толщиной 50 микрометров отражала 90 процентов всего света в видимом диапазоне. При уменьшении толщины пленки она сохраняет свою ярко-белую окраску, что выгодно отличает разработанные мембраны от других подобных материалов, таких как бумага. В частности, такие пленки толщиной 10 микрон отражают около 75 процентов падающего света, и даже при уменьшении толщины до 2,5 микрона доля отраженного света не опускается ниже 60 процентов.

Оптические характеристики трех видов пленок: слева — доля отраженного света в зависимости от длины волны, справа — процент прошедшего света в зависимости от толщины пленки
Оптические характеристики трех видов пленок: слева — доля отраженного света в зависимости от длины волны, справа — процент прошедшего света в зависимости от толщины пленки

По словам авторов работы, полученные ими белые пленки толщиной 150 микрометров примерно в 20–30 раз белее обычной бумаги. Также исследователи отмечают, что полученные ими мембраны абсолютно нетоксичны, в отличие от, например, материалов на основе наночастиц оксида цинка или оксида титана, которые используются сейчас в качестве эффективных отражателей света в красках или солнцезащитном креме.

Материаловеды говорят, что обнаруженные ими светорассеивающие свойства аномальны для целлюлозы и связаны с неоднородным распределением волокон по размеру, их неупорядоченным пространственным расположением в пленке и анизотропией системы. Предложенные материалы с возможностью контролировать их прозрачность и поглощающую способность можно в будущем использовать в качестве биосовместимых покрытий с повышенной отражательной способностью или компонентов красок.