Специалисты Samsung вместе с учеными из Стэнфордского университета смогли уместить на одном дюйме дисплея десять тысяч пикселей. Такое высокое разрешение позволит создавать очки виртуальной реальности высокой четкости и новые экраны для носимых устройств.

Среди характеристик дисплеев наиболее популярная — разрешение. Но при одном и том же количестве пикселей по вертикали или горизонтали диагональ экранов может сильно различаться. Количество точек на дюйм (PPI) характеризует реальную разрешающую способность любого средства вывода изображения. Пока речь идет о мониторах или экранах смартфонов, современный технологический уровень позволяет создавать дисплеи высокой четкости. Однако на подходе бум виртуальной реальности: в VR-очках матрицы должны быть очень маленькими и легкими при еще большей плотности пикселей.

Достигнутый американскими учеными результат превосходит все существующие запросы. Даже при разрешении 32k созданной по этой технологии дисплей будет иметь диагональ всего шесть дюймов и плотность пикселей около 6 000 ppi. В лабораторных условиях удалось достичь показателя в 10 000 ppi, а теоретический максимум — вдвое больше. В опубликованной на портале IEEE Spectrum статье с описанием результатов разработки пока не указано, когда на рынке появятся подобные OLED-матрицы.

Чтобы достичь такой высокой разрешающей способности, исследователи пересмотрели сам принцип построения дисплея. В телевизионных экранах с матрицами, выполненными по OLED-технологии, каждый пиксель излучает белый свет и закрыт соответствующим светофильтром — красным, синим или зеленым. Результирующая картинка представляет собой массив таких светящихся точек разной яркости и цвета. А человеческий глаз уже воспринимает усредненный цвет соседних пикселей и видит полноценное изображение.

Вышеописанный метод позволяет создавать относительно дешевые панели с плотностью пикселей порядка 100-200 ppi. Для смартфонов, где нужна более высокая четкость картинки (в iPhone 12, например, — 460 ppi), используют другой метод. В нем органический светоизлучающий слой заключен между тончайшими листами металла. Они имеют микроскопические отверстия, пропускающие свет нужного оттенка. Эта технология дороже и сложнее в изготовлении. Кроме того, обе они имеют ограничения по плотности пикселей, которые будут достигнуты уже в ближайшие годы.

Изображение наностолбиков, полученное при помощи сканирующего электронного микроскопа
Изображение наностолбиков, полученное при помощи сканирующего электронного микроскопа

Предложенный инженерами Samsung и учеными из Стэнфордского университета способ подразумевает сравнительно дешевую и более перспективную альтернативу. В их технологии излучающий белый свет слой органического материала с одной стороны закрыт серебряной фольгой, а с другой — метаповерхностью. Она состоит из огромного количества наностолбиков высотой 80 нанометров и диаметром 100 нанометров.

В такой матрице свет переотражается множество раз, меняя длину волны. В зависимости от плотности размещения на подложке серебряные наностолбики отражают только определенные части спектра. Где их больше всего — красный, среднее количество — зеленый, а те участки метаповерхности, где столбиков меньше всего, — синий. Подложка в этом дисплее разбита на секторы по четыре квадрата с разной плотностью наностолбиков, играющие роль субпикселей. Экспериментальная панель показала, что технология позволяет делать дисплеи с яркостью вдвое выше, чем у современных коммерчески доступных телевизоров.

Появление в скором времени подобных экранов не только позволит производителям гаджетов для виртуальной реальности добиться еще большего погружения пользователя. Оно также заставит их в очередной раз ломать голову над повышением производительности. Далеко не каждый компьютер или мобильное устройство способно генерировать картинку сверхвысокого разрешения (хотя бы 8k) 120 раз в секунду.